Acta Crystallographica Section E
Structure Reports
Online
ISSN 1600-5368

Yan Zheng, ${ }^{\text {a }}$ Jun-Peng Zhuang, ${ }^{\text {a }}$ Wen-Qin Zhang, ${ }^{\text {a }}{ }^{*}$ Xue-Bing Leng $^{\text {b }}$ and Lin-Hong Weng ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Chemistry, Tianjin University, Tianjin 300072, People's Republic of China, and ${ }^{\text {b }}$ Department of Chemistry, Nankai University, Tianjin 300071, People's Republic of China

Correspondence e-mail: wqzhang@eyou.com

Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.006 \AA$
R factor $=0.068$
$w R$ factor $=0.167$
Data-to-parameter ratio $=12.6$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

$r-1, c-2, t-3, t-4-1,3-B i s(4-m e t h o x y p h e n y l)-2,4-b i s(5-$ phenyl-1,3,4-oxadiazol-2-yl)cyclobutane 1,4-dioxane solvate

The asymmetric unit of the crystal structure of $\mathrm{C}_{34} \mathrm{H}_{28} \mathrm{~N}_{4} \mathrm{O}_{4} \cdot \mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2}$, which is a $1: 1$ inclusion complex, consists of half a molecule of the title compound t-DPC and half a molecule of 1,4 -dioxane. The structure shows that t-DPC is centrosymmetric; its cyclobutane ring has an exactly planar conformation, and is nearly square. The four $\mathrm{C}-\mathrm{C}$ single bonds are of equal length $[1.569$ (4) \AA] and the bond angles are $91.6(2)$ and $88.4(2)^{\circ}$. The major photodimerization process is a head-to-tail reaction rather than a head-to-head one.

Comment

The cyclobutane rings for most tetraarylcyclobutanes have a puckered conformation, such as in $r-1, c-2, t-3, t-4-1,3-b i s[2-(4-$ R-phenyl)]-2,4-di-(4-pyridyl)cyclobutane ($R=\mathrm{Cl}, \mathrm{CH}_{3}, \mathrm{C}_{6} \mathrm{H}_{5}$). The average dihedral angles of the cyclobutane ring are 19.2, 24.6 and 16.4°, respectively, in the three structures (Busetti et al., 1980; Zhang et al., 1998; Zhang, Zhang et al., 2000). However, it is very interesting that some tetraoxazolylsubstituted cyclobutanes have planar four-membered rings, as found in r-1,c-2,t-3,t-4-tetrakis[2-(5-phenyl-oxazolyl)]cyclobutane (Zhang et al., 1996), r-1,c-2,t-3,t-4-tetrakis[2benzoxazolyl]cyclobutane (Zhang, Li et al., 2000) and $r-1, c-2, t-$ 3,t-4-tetrakis[2-(6,7-dimethylbenzoxazolyl)]cyclobutane (Kao et al., 1989). This interesting phenomenon prompted us to generate a new heteroaryl-substituted cyclobutane in order to study the effect of the substitutent on the conformation of the cyclobutane ring. We report here for the first time that a di-phenyl-diphenyloxadiazolyl-substituted cyclobutane (t-DPC) has a planar conformation.

Received 22 June 2001
Accepted 9 October 2001
Online 13 October 2001

t-DPC
(C) 2001 International Union of Crystallography

Printed in Great Britain - all rights reserved

Figure 1
View of t-DPC with 30% probability ellipsoids.

The X-ray diffraction results clearly show that there are one t-DPC molecule and one 1,4-dioxane molecule in the unit cell and the molecules are exactly centrosymmetric, demonstrating that a head-to-tail photodimerization process has occurred. The cyclobutane ring of t-DPC is planar, just as in tetraoxazolylcyclobutanes. It appears that the substituents in these compounds, lacking an $\alpha-\mathrm{H}$ atom, have a relatively small steric requirement, allowing a planar four-membered ring.

The two independent pairs of $\mathrm{C}-\mathrm{C}$ bonds of the cyclobutane ring are equal in length $[1.569$ (4) \AA A and are longer than a normal $\mathrm{C}-\mathrm{C}$ single bond. However, this elongation is common for cyclobutanes. The bond angles $\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 8^{\mathrm{i}}$ and $\mathrm{C} 9-\mathrm{C} 8-\mathrm{C} 9^{\mathrm{i}}$ are 91.6 (2) and 88.4 (2) ${ }^{\circ}$ respectively, so that the cyclobutane ring is almost a square. The dihedral angle between the phenyloxadiazolyl plane and the 4 -methoxyphenyl plane situated on the same side of the cyclobutane ring is $50.4(3)^{\circ}$, intermediate between parallel and perpendicular.

For the five bonds in the oxadiazolyl ring, the $\mathrm{C}-\mathrm{O}$ single bonds are shorter than that $(1.365 \AA$) of $2,5-\mathrm{di}(4-$ pyridyl)-$1,3,4$-oxadiazole (DPO), but the $\mathrm{N}-\mathrm{N}$ single bond is much longer than that ($1.409 \AA$) of DPO (Stockhause et al., 2001).

The bond angle $\mathrm{C} 1-\mathrm{O} 1-\mathrm{C} 2$ is $118.0(4)^{\circ}$, which is quite large compared with that of common aliphatic ethers, and atoms C 1 and O 1 are almost coplanar with the benzene ring plane [the torsion angles $\mathrm{C} 1-\mathrm{O} 2-\mathrm{C} 2-\mathrm{C} 3$ and $\mathrm{C} 1-\mathrm{O} 2-$ $\mathrm{C} 2-\mathrm{C} 3$ are $-3.1(7)$ and $178.6(4)^{\circ}$, respectively], which means that O 1 is an $s p^{2}$ hybridized atom and there exists an n π conjugation between O1 and the benzene ring. Because of the non-bonding repulsion between the methyl group and $\mathrm{H} 3 a$ (on C3), the bond angle $\mathrm{C} 3-\mathrm{C} 2-\mathrm{O} 1$ is increased to $125.0(4)^{\circ}$, whereas the $\mathrm{C} 7-\mathrm{C} 2-\mathrm{O} 1$ angle is reduced to 114.7 (4) ${ }^{\circ}$.

Experimental

trans-1-(4-Methoxyphenyl)-2-[2-(5-phenyl-1,3,4-oxadiazolyl)]ethene (PDE) was synthesized by condensing 4-methoxybenzaledhyde and 2-methyl-5-phenyl-1,3,4-oxadiazole in DMF with KOH catalysis at 348 K; m.p. $403-404 \mathrm{~K} . \mathrm{UV}$ (1,4-dioxane): $\lambda_{\max } 338$ ($\log \varepsilon 4.58$) nm; IR (KBr): 3056 (w), $1640(m), 1606(v s), 1528(v s), 1246(v s), 1176$ (vs), $1012(m), 960(m) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$: $\delta 8.14-8.08(4 \mathrm{H}, m), 7.60-$ $7.47(12 \mathrm{H}, m), 6.96-6.89(6 \mathrm{H}, m), 4.10(4 \mathrm{H}, t), 2.00(4 \mathrm{H}, m)$ p.p.m. 1.0 g PDE was dissolved in 200 ml acetonitrile and irradiated with a 300 W medium-pressure mercury lamp for 70 h . Then 200 ml of water was added, the precipitate was filtered and recrystallized from ethanol to give $123 \mathrm{mg} t$-DPC; m.p. $504-505 \mathrm{~K} . \lambda_{\max } 255(\log \varepsilon$ 4.58) nm; IR (KBr): 3037 (w), 2958 (w), 1612 (s), 1563 (s), 1515 ($v s$), $1251(v s), 1181(s), 1037(s), 829(s), 775(s) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta$ $7.81(4 \mathrm{H}, d), 7.47(6 \mathrm{H}, m), 7.26(4 \mathrm{H}, d), 6.77(4 \mathrm{H}, d), 4.89(2 \mathrm{H}, t), 4.80$ $(2 \mathrm{H}, t), 3.66(6 \mathrm{H}, s)$ p.p.m. ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 165.65,165.40,159.19$, 131.77, 129.37, 129.11, 128.60, 126.96, 123.97, 114.36, 55.39, 43.70, 39.93 p.p.m. A single-crystal of the title compound was grown in 1,4dioxane by slow evaporation of the solvent.

Crystal data

$\mathrm{C}_{34} \mathrm{H}_{28} \mathrm{~N}_{4} \mathrm{O}_{4} \cdot \mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2} \quad Z=1$
$M_{r}=644.71$
Triclinic, $P \overline{1}$
$a=5.995$ (2) \AA 。
$b=10.242$ (4) \AA
$c=14.292$ (5) \AA
$Z=1$
$D_{x}=1.257 \mathrm{Mg} \mathrm{m}^{-3}$
$c=14.292(5) \AA$
$\alpha=93.370(6)^{\circ}$
Cell parameters from 2713
$\beta=90.595(6)^{\circ}$
$\gamma=103.557(6)^{\circ}$
$V=851.4(5) \AA^{3}$
$\mu=0.09 \mathrm{~mm}^{-1}$
$T=298$ (2) K
Plate, colorless
$0.30 \times 0.25 \times 0.20 \mathrm{~mm}$

Data collection

CCD area-detector diffractometer

φ and ω scans

3275 measured reflections
2746 independent reflections
1195 reflections with $I>2 \sigma(I)$

$$
\begin{aligned}
& R_{\text {int }}=0.043 \\
& \theta_{\max }=25.0^{\circ} \\
& h=-7 \rightarrow 6 \\
& k=-12 \rightarrow 7 \\
& l=-16 \rightarrow 16
\end{aligned}
$$

Refinement

Refinement on F^{2}
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.065 P)^{2}\right]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.068$
$w R\left(F^{2}\right)=0.167$
$S=0.97$
2746 reflections
218 parameters
H -atom parameters constrained
$(\Delta / \sigma)_{\text {max }}=0.003$
$\Delta \rho_{\text {max }}=0.16 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.19 \mathrm{e}^{-3}$
Extinction correction: SHELXL97
Extinction coefficient: 0.023 (4)

Table 1
Selected geometric parameters ($\mathrm{A},{ }^{\circ}$).

$\mathrm{C} 1-\mathrm{O} 1$	$1.405(5)$	$\mathrm{C} 8-\mathrm{C} 9^{\mathrm{i}}$	$1.569(4)$
$\mathrm{O} 2-\mathrm{C} 10$	$1.352(3)$	$\mathrm{C} 9-\mathrm{C} 10$	$1.472(4)$
$\mathrm{O} 2-\mathrm{C} 11$	$1.354(3)$	$\mathrm{C} 10-\mathrm{N} 1$	$1.298(4)$
$\mathrm{O} 1-\mathrm{C} 2$	$1.394(5)$	$\mathrm{N} 1-\mathrm{N} 2$	$1.422(3)$
$\mathrm{C} 5-\mathrm{C} 8$	$1.504(4)$	$\mathrm{N} 2-\mathrm{C} 11$	$1.281(4)$
$\mathrm{C} 8-\mathrm{C} 9$	$1.569(4)$	$\mathrm{C} 11-\mathrm{C} 12$	$1.463(4)$
$\mathrm{C} 10-\mathrm{O} 2-\mathrm{C} 11$	$102.9(3)$	$\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 8^{\mathrm{i}}$	$91.6(2)$
$\mathrm{C} 2-\mathrm{O} 1-\mathrm{C} 1$	$118.0(4)$	$\mathrm{N} 1-\mathrm{C} 10-\mathrm{O} 2$	$112.7(3)$
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{O} 1$	$125.0(4)$	$\mathrm{C} 10-\mathrm{N} 1-\mathrm{N} 2$	$105.3(3)$
$\mathrm{C} 7-\mathrm{C} 2-\mathrm{O} 1$	$114.7(4)$	$\mathrm{C} 11-\mathrm{N} 2-\mathrm{N} 1$	$105.9(3)$
$\mathrm{C} 9-\mathrm{C} 8-\mathrm{C} 9^{\mathrm{i}}$	$88.4(2)$	$\mathrm{N} 2-\mathrm{C} 11-\mathrm{O} 2$	$113.1(3)$

Symmetry code: (i) $-x,-y, 1-z$.
Data collection: SMART (Bruker, 1998); cell refinement: SMART; data reduction: SAINT and SHELXTL (Bruker, 1998); program(s)
used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

We gratefully acknowledge financial support from the National Natural Science Foundation of China (No. 29602006) and the Excellent Teacher's Foundation of the State Education Ministry of China.

References

Bruker (1998). SMART, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.

Busetti, V., Valle, G. \& Zanotti, G. (1980). Acta Cryst. B36, 894-897.
Kao, C. H., Zhou, Y. M., Xia, X. P., Wang, H. G. \& Wang, R. J. (1989). J. Struct. Chem. 8, 53-56.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Stockhause, S., Wickleder, M. S., Meyer, G., Orgzall, I. \& Schulz, B. (2001). J. Mol. Struct. 561, 175-183.
Zhang, W. Q., Li, S. L., Zhang, Z. M., Qi, X., Zheng, Y., Zhuang, J. P. \& Mak, T. C. W. (2000). Chem. J. Chin. Univ. 21, 556-561.

Zhang, W. Q., Wang, M. Z. \& Wang, H. G. (1996). Sci. China Ser. B, 39, 105112.

Zhang, W. Q., Zhang, M. J., Wang, J. X., Yang, X. R., Wang, S. L., Jiang, Q. \& An, Y. (1998). Acta Chim. Sin. 56, 612-617.
Zhang, W. Q., Zhang, Z. M., Zheng, Y., Wang, S. L.\& Zhao, S. N. (2000). Acta Phys. Chim. Sin. 16, 207-213.

